Bootstrap optical flow confidence and uncertainty measure
نویسندگان
چکیده
We address the problem of estimating the uncertainty of optical flow algorithm results. Our method estimates the error magnitude at all points in the image. It can be used as a confidence measure. It is based on bootstrap resampling, which is a computational statistical inference technique based on repeating the optical flow calculation several times for different randomly chosen subsets of pixel contributions. As few as ten repetitions are enough to obtain useful estimates of geometrical and angular errors. For demonstration, we use the combined local–global optical flow method (CLG) which generalizes both Lucas– Kanade and Horn–Schunck type methods. However, the bootstrap method is very general and can be applied to almost any optical flow algorithm that can be formulated as a pixel-based minimization problem. We show experimentally on synthetic as well as real video sequences with known ground truth that the bootstrap method performs better than all other confidence measures tested. 2011 Elsevier Inc. All rights reserved.
منابع مشابه
Application of the Bootstrap Method to Quantify Uncertainty in Seismic Hazard Estimates
This paper describes a methodology to asses the uncertainty in seismic hazard estimates at particular sites. A variant of the bootstrap statistical method is used to combine the uncertainty due to earthquake catalog incompleteness, earthquake magnitude, and recurrence and attenuation models used. The uncertainty measure is provided in the form of a confidence interval. Comparisons of this metho...
متن کاملPopulation dynamic of Acipenser persicus by Monte Carlo simulation model and Bootstrap method in the southern Caspian Sea (Case study: Guilan province)
In this study population dynamic of Acipenser persicus with age structure model by Monte Carlo and Bootstrap approach was studied. Length frequency data a total of 4376 specimens collected from beach seine, fixed gill net and conservation force in coastal Guilan province during 2002 to 2012. Data imported to FiSAT II for length frequency analyze by ELEFAN 1. K, L∞ and t0 estimated 203, 0.08 and...
متن کاملBootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution
This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...
متن کاملA Statistical Confidence Measure for Optical Flows
Confidence measures are crucial to the interpretation of any optical flow measurement. Even though numerous methods for estimating optical flow have been proposed over the last three decades, a sound, universal, and statistically motivated confidence measure for optical flow measurements is still missing. We aim at filling this gap with this contribution, where such a confidence measure is deri...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision and Image Understanding
دوره 115 شماره
صفحات -
تاریخ انتشار 2011